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Abstract

The sign of the supersymmetric Higgs mass � is usually taken as an independent input

parameter in analyses of the supersymmetric standard model. I study the role of

theories of supersymmetry breaking in determining the sign of � as an output. Models

with vanishing soft scalar couplings at the apparent gauge coupling uni�cation scale

are known to predict positive �. I investigate more general results for the sign of �
as a function of the holomorphic soft scalar couplings, and compare to predictions of

models with gaugino mass dominance at higher scales. In a signi�cant region of the

B0=m1=2 versus A0=m1=2 plane including A0 = B0 = 0, � must be positive. In another

region, � is de�nitely negative. Only in a smaller intermediate region does knowledge

of the supersymmetry breaking mechanism not permit a de�nite prediction of the sign

of �. The last region will shrink considerably as the top quark mass becomes more

accurately known.

http://arXiv.org/abs/hep-ph/0106280


In the minimal supersymmetric standard model (MSSM) [1, 2], the Higgs mass term �

is the only coupling which does not explicitly break supersymmetry that has not already

been directly measured by experiment. Nevertheless, in phenomenological treatments of su-

persymmetric models, it is usual to treat j�j as an output rather than an input parameter,

because it can be �xed in terms of the other parameters from our knowledge of the elec-

troweak scale. However, this condition alone does not address the phase of �, which is left

un�xed by the conditions of electroweak symmetry breaking (EWSB). The lack of observed

CP violation in the electric dipole moments of the neutron and electron requires that large

relative phases in the MSSM lagrangian must either be absent or aligned to rather particular

values. Barring the latter possibility, it follows that all gaugino masses should be (at least

nearly) relatively real, and that with appropriately chosen phase conventions � is real and

the phases of scalar cubic couplings are equal to their Yukawa coupling counterparts.

The remaining discrete phase freedom sign(�) is therefore usually regarded as an inde-

pendent input parameter. However, if the mechanism of supersymmetry breaking is known,

the phase of � including its sign is often determined purely from the theory and knowl-

edge of already-measured dimensionless supersymmetry-preserving couplings. This has been

noted before in the contexts of 
ipped SU(5)�U(1) no-scale supergravity models [4] and in

gauge-mediated supersymmetry breaking models[13]-[16]. More generally, a complete model

of supersymmetry breaking should predict boundary conditions for all soft parameters in

terms of supersymmetric parameters. This implies that, under many (but not all!) circum-

stances, the sign of � should properly be regarded as an output prediction rather than an

input assumption. Conversely, an experimental determination of the sign of � will provide a

non-trivial test of di�erent models of supersymmetry breaking. In this paper I will study the

ability of 
avor-preserving high-scale theories of supersymmetry breaking to predict the sign

of �, and consider under what circumstances such a prediction can be made unambiguously.

In this paper, it is assumed that the gaugino mass parameters M1, M2, and M3 indeed

have the same phase, so that they can be taken real and positive without loss of generality.y

To �x conventions explicitly, the tree-level neutral Higgs potential is given by

V = (j�j2 +m2
Hu
)jH0

uj2 + (j�j2 +m2
Hd
)jH0

d j2 � (bH0
uH

0
d + c:c:)

+
1

8
(g2 + g02)(jH0

uj2 � jH0
d j2)2; (1)

Here b is the holomorphic soft supersymmetry-breaking Higgs squared mass parameter.

(Other common notations in the literature for this term are B� and m2
12 and m

2
3.) Without

loss of generality, a suitably renormalized b is taken to be real and positive at a renormal-

ization group (RG) scale near or below 1 TeV, to ful�ll the condition that at the minimum

yThis would follow, for example, in GUT models in which all gaugino masses are uni�ed.
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of the e�ective potential, the Higgs �elds will have real positive VEVs:

hH0
ui = vu; hH0

d i = vd; v2u + v2d � (175 GeV)2; vu=vd � tan �: (2)

The tree-level top, bottom and tau masses and Yukawa couplings mt = vuyt, mb = vdyb and

m� = vdy� are simultaneously real and positive. (Lighter fermion masses are neglected, so

CKM CP violation is not an issue.) Neutralino and chargino mass matrices are given by

M eN =

0BBB@
M1 0 �g0vd=

p
2 g0vu=

p
2

0 M2 gvd=
p
2 �gvu=

p
2

�g0vd=
p
2 gvd=

p
2 0 ��

g0vu=
p
2 �gvu=

p
2 �� 0

1CCCA ; MeC =
�
M2 gvu
gvd �

�
: (3)

The relevant soft supersymmetry-breaking terms include

� Lsoft = �bH0
uH

0
d + atetLet�RH0

u + abebLeb�RH0
d + a� e�Le� �

RH
0
d + c:c:; (4)

so that the stop and sbottom squared mass matrices are:

m
2et =

 
m2etL + y2t v

2
u +DetL atvu � �ytvd

atvu � �ytvd m2etR + y2t v
2
u +DetR

!
; (5)

m
2eb =

 
m2ebL + y2bv

2
d +DebL abvd � �ybvu

abvd � �ybvu m2ebR + y2bv
2
d +DebR

!
; (6)

where D� = (g2T �
3 � g02Y �)(v2d � v2u)=2. These phase conventions agree with those in [1, 2].

Within the framework of supersymmetry breaking communicated by arbitrary Planck-

suppressed operators, the assumption that � is real is a strong and seemingly unnatural one,

requiring justi�cation in terms of some organizing principle. One way of addressing this

is to require that gaugino masses are the dominant source of all supersymmetry breaking

at some RG input scale MX. Other soft supersymmetry-breaking parameters can then be

thought of as radiative e�ects due to large logarithms which can be resummed using the

renormalization group. Older versions of this idea followed from the ideas of \no-scale"

supergravity models [3, 4], and it has found a di�erent justi�cation recently in terms of

models with supersymmetry breaking displaced along compacti�ed extra dimensions [5]-

[11]. A crucial bene�t of these models is that they naturally avoid the most dangerous

types of supersymmetric 
avor violation, since the gaugino interactions which communicate

supersymmetry breaking to the sfermion masses are automatically 
avor-blind.

If gaugino masses have a common phase and are the dominant source of supersymmetry

breaking, then it is well-known that � can be taken to be real without loss of generality.

One way to understand this is to consider the form of the RG equations for the holomorphic
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scalar supersymmetry-breaking interactions b, at, ab, and a� . At all orders in perturbation

theory, these can be written in the form[12]:

d

dt
(af=yf ) = �2O[�(yf)=yf ]; (7)

d

dt
(b=�) = �2O[�(�)=�] (8)

where

O � 1

2

X
a

Maga
@

@ga
�X

f

af
@

@yf
(9)

is a di�erential operator on the space of gauge and holomorphic couplings. The index a

labels the gauge groups with gauge couplings ga and gaugino masses Ma, and t = ln(Q=Q0)

with Q the RG scale. If b=�, at=yt, ab=yb, and a�=y� are negligible at the input scale and

are generated by radiative corrections, they will be real at all other scales, since O is linear

in Ma and af and the quantities �(yf)=yf and �(�)=� are sums of real super�eld anomalous

dimensions. Since b, yt, yb, y� , and one Ma are real by convention, and the other Ma are real

by assumption, it follows that �, at, ab, a� are real within the same set of conventions.

The fact that the running gauge couplings of the MSSM are found to nearly meet at a

scale near 2� 1016 GeV is suggestive that a perturbative RG analysis can be applied for all

couplings and parameters up to that scale. However, whether in models of extra dimensions,

or \no-scale" models, or supergravity-inspired models which happen to have gaugino mass

domination, it is likely that the true input scale is higher, perhaps at the reduced Planck

scale MP = 2:4 � 1018 GeV. It is diÆcult to say with any con�dence what the RG running

should be like above MU, except that the evolution of soft parameters is signi�cant and

dominated by gaugino mass e�ects. Therefore, it is useful to work with boundary conditions

for the gaugino masses M1, M2, M3 and soft scalar interactions:

b=� � B0 (10)

at=yt = A0t; ab=yb = A0b; a�=y� = A0� (11)

imposed at MU � 2 � 1016 GeV (except as noted below). If gaugino mass domination is

input at MU, then one would have A0t = A0b = A0� = B0 = 0 at that scale. However,

if the true input scale is higher, then an examination of the perturbative form of the beta

functions eqs. (7)-(9) shows that B0 and A0t, A0b, A0� will each be negative at MU due to

loops involving gauginos.

In general one expects that A0t, A0b, A0� obtain di�erent corrections from physics above

MU, depending on how the MSSM super�elds �t into whatever gauge group may reign in that
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regime. Similarly, the non-holomorphic scalar squared masses will not be universal at MU if

they occupy di�erent representations of the gauge group. In a study of the sparticle spectrum,

it would be crucial to assume knowledge of these particulars. However, the results below

regarding the sign of � depend only weakly on the e�ects of non-universal non-holomorphic

scalar masses, which do not enter directly in the RG equations that can a�ect the running of

the crucial quantity b=�. Also, the dependence of the running of b=� on scalar cubic couplings

below MU is mostly due (at least at small or moderate tan �) to the single quantity A0t,

which in many models is not very di�erent from A0b anyway. Results for the case that the

gaugino masses do not unify at MU are beyond the scope of this paper, but I expect them

to behave in a similar way to the results below as long as the ratios among M1, M2 and M2

are moderate. Therefore, for concreteness and simplicity I will use the traditional boundary

conditions

m1=2 = M1 =M2 =M3; (12)

A0 = A0t = A0b = A0� ; (13)

m2
0 = m2

� (for all �) (14)

as a convenient parameterization of our ignorance regarding the true boundary conditions

at MU. Each model is then characterized by an overall gaugino mass scale m1=2 and ratios

B0=m1=2, A0=m1=2, and m
2
0=m

2
1=2. In gaugino mass dominated models, one generally expects

the e�ective B0=m1=2, A0=m1=2 at MU to be negative and not too large in magnitude.

In practice, the relation between the sign of � and the high-scale boundary conditions

is accomplished by choosing � and b near the electroweak scale to produce correct EWSB,

running them up to MU, and then iterating to the desired boundary conditions. I use 2-loop

RG equations [17, 18] for all MSSM parameters. The conversion of Standard Model MS

quantities to MSSM DR
0
[19, 18] ones, and the relation between pole masses and running

parameters is accomplished using ref. [20]. The conditions for EWSB, the values of vu

and vd, and the physical masses of Higgs scalar bosons are calculated using the full one-

loop self-energy corrections plus the leading two-loop e�ective potential corrections, namely

those proportional to g23 [21] and those quartic in yt and yb [22]. The e�ective potential

minimization is performed at an RG scale equal to the geometric mean of the stop masses.

In this paper, values of tan � are always quoted as the ratio of running VEVs at MZ in

the non-decoupling DR
0
scheme in Landau gauge, determined by running according to the

5



one-loop RG equationsz[23]

d

dt
ln(vu) =

1

16�2

�
�3y2t +

3

4
g22 +

3

20
g21

�
; (15)

d

dt
ln(vd) =

1

16�2

�
�3y2b � y2� +

3

4
g22 +

3

20
g21

�
(16)

from the scale at which the e�ective potential is minimized. The largest uncertainties in the

following come from not knowing the precise values of the top and bottom quark masses and

the QCD coupling. I take central values and allowed ranges as follows:

�MS
3 (MZ) = 0:118 � 0:003; (17)

mMS
b (MZ) = 2:88 + 16(0:118 � �3)� 0:10 GeV; (18)

mpole
t = 174:3 � 8:0 GeV: (19)

Here �MS
3 and mMS

b are running parameters in the Standard Model with 5 quark 
avors. The

range in the top quark mass is larger than that quoted in [24], because of the theoretical

uncertainty in relating the top-quark Yukawa coupling to the pole mass in supersymmetry.

The RG evolution of the dimensionless ratio b=�m1=2 is given in �g. 1(a) for an example

gaugino-mass-dominated model with A0 = B0 = 0 atMX =MU. (The graphs shown also use

m1=2 = 400 GeV, and m2
0 = 0, but they depend only weakly on those choices.) With these

boundary conditions, tan � is uniquely determined by the requirements of correct electroweak

symmetry breaking, so there is only one possible RG trajectory for the parameters of the

model once �3, mb and mt are �xed.. As shown, b=�m1=2 is negative along most of its

evolution towards the infrared, but turns positive at a scale about two or three orders of

magnitude above the electroweak scale. This can be explained as follows. The one-loop RG

equations for the holomorphic soft couplings following from eq. (7)-(8) are:

16�2
d

dt
(at=yt) =

32

3
g23M3 + 6g22M2 +

26

15
g21M1 + 12atyt + 2abyb; (20)

16�2
d

dt
(ab=yb) =

32

3
g23M3 + 6g22M2 +

14

15
g21M1 + 12abyb + 2atyt + 2a�y� ; (21)

16�2
d

dt
(a�=y�) = 6g22M2 +

18

5
g21M1 + 8a�y� + 6abyb; (22)

16�2
d

dt
(b=�) = 6g22M2 +

6

5
g21M1 + 6atyt + 6abyb + 2a�y� : (23)

At high RG scales, gaugino masses are dominant, quickly driving each of af=yf and b=� to

negative values in the infrared. Continuing to lower RG scales, the dominant contributions

zNote that the quantities on the right-hand sides of these equations are the negative of the anomalous
dimensions of the Higgs �elds in the component �eld formalism(in which auxiliary �elds have been integrated
out) and in Landau gauge, and are not equal to the super�eld anomalous dimensions.
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Figure 1: Running of the dimensionless ratio of parameters b=�m1=2 with the boundary
conditions A0 = B0 = m0 = 0 and m1=2 = 400 GeV imposed at (a) MU = 2� 1016 GeV and
(b) MP = 2:4� 1018 GeV. The solid (blue) lines are obtained for the central values, and the
dashed (red) lines for the maximum deviation, implied by eqs. (17)-(19). Since b=�m1=2 is
positive at the weak scale, � must be positive.

to the beta function for b=� are the negative ones proportional to atyt, abyb and a�y� . This

forces b=� positive before the electroweak scale is reached. There is a signi�cant dependence

on the top mass and a smaller dependence on the bottom mass and �3, shown by the envelope

of dashed lines. Since b is positive near the electroweak scale by convention, the sign of �

is the same as the sign of the dimensionless quantity b=�m1=2. Because there is a unique

solution for tan �, the conclusion is that � is inevitably positive.

The model shown in �g. 1(a) predicts tan� should be between about 10 (for larger mtop,

corresponding to the upper dashed line) and 24 (for smallermtop, corresponding to the lower

dashed line). It also generally predicts that a stau is the lightest supersymmetric particle

(LSP), abandoning the possibility of a supersymmetric source for the cold dark matter.

This is easily corrected if the true input scale is higher than MU. An example of this is

shown in �g. 1(b), for which the scale at which the boundary conditions eq. (10)-(14) with

m0 = A0 = B0 = 0 are moved up to the reduced Planck scale MP. For simplicity, no

new particle thresholds are introduced at the apparent uni�cation scale. As before, the

running of b=� renders it positive at the electroweak scale, implying again that � must be

positive. In this ultraconservative version of the MSSM with no new particles and gaugino

mass domination at the Planck scale, a bino-like neutralino is the LSP.

More generally, for given RG trajectories of the dimensionless supersymmetric parame-
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Figure 2: The region of the B0=m1=2 vs. A0=m1=2 plane which allows � > 0 is unshaded.
Boundary conditions are imposed at MU = 2� 1016 GeV, with gaugino masses restricted by
m1=2 < 400 GeV and scalar masses in the range 0 < m2

0=m
2
1=2 < 1. All values of tan � leading

to correct EWSB, perturbative couplings up to MU , and charged superpartners heavier than
100 GeV are allowed. Example models lines are shown for tan � = 3; 6; 10; 20; 30; 40; 50 (from
top to bottom), with m1=2 = 350 GeV, m2

0=m
2
1=2 = 0:5.

ters, the running of the dimensionless quantity b=�m1=2 is determined uniquely by its bound-

ary condition B0=m1=2 and that of the scalar cubic couplings, A0=m1=2 at MU. This can be

checked from the form of eqs. (7), (8). The e�ect on the sign of � can be roughly stated as

follows. Lowering A0=m1=2 tends to make the beta function for b=� more negative, making

b=�m1=2 more positive at the weak scale, thus increasing the parameter space in other vari-

ables for which � must be positive. Lowering B0=m1=2 will have the opposite e�ect, since for

very negative B0, only negative � can rescue b=� to make it positive near the electroweak

scale. Therefore, one can map out regions of the B0=m1=2 versus A0=m1=2 which predict that

� is de�nitely positive, de�nitely negative, or can have either sign.

Figure 2 shows the region for which � can be positive, for m1=2 < 400 GeV and 0 <

m2
0=m

2
1=2 < 1. In making this graph, all values of tan � which maintain perturbative couplings
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Figure 3: The region of the B0=m1=2 vs. A0=m1=2 plane which allows � < 0 is unshaded.
Universal gaugino masses are restricted by m1=2 < 400 GeV and universal scalar masses lie
in the range 0 < m2

0=m
2
1=2 < 1. All values of tan� leading to correct EWSB, perturbative

couplings up toMU , and charged superpartners heavier than 100 GeV are allowed. Example
model lines are shown for various values of tan �, using m1=2 = 350 GeV, m2

0=m
2
1=2 = 0:5.

up to MU are allowed, and the top and bottom quark masses and �3 are allowed to vary

over the full ranges indicated in eq. (17)-(19). All charged sparticle masses are required to

be heavier than 100 GeV. The shaded region indicates where no solution with � > 0 can be

found. Smaller values of tan � corresponds to points with larger B0=m1=2, while the largest

allowed tan � values occur near the boundary of the unshaded region. Several example

model lines with �xed tan� = 3; 6; 10; 20; 30; 40; 50 are also shown; these were computed

with m1=2 = 350 GeV, m2
0=m

2
1=2 = 0:5 and central values for the top and bottom masses

and �3. I have also indicated by dashed lines those models for which the lightest CP-even

Higgs mass mh calculated as indicated above comes out lighter than 112.5 GeV, for rough

comparison with LEP2 limits. (Even with full one-loop and leading two-loop calculations,

it can be estimated from scale-dependence considerations that there is at least a 2 GeV

uncertainty in the calculated mh.)
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In contrast, �g. 3 shows the region which allows negative � under the same assump-

tions. As suggested by �g. 1(a), there is a signi�cant neighborhood of the point A0=m1=2 =

B0=m1=2 = 0 which cannot support negative �. Here, this is shown to be true for any values

of m1=2 < 400 GeV and 0 < m2
0=m

2
1=2 < 1 and with top and bottom quark masses and �3

allowed to vary over the entire ranges indicated in eq. (17)-(19). Models which approach

the border of the allowed region with � < 0 turn out to have intermediate values of tan �

(typically between 10 and 25), while smaller or larger tan� models have larger negative

B0=m1=2.

The regions in �gs. 2 and 3 allowed for positive and negative � have a signi�cant overlap.

This represents a true ambiguity in the sign of �, even in models for which the boundary

conditions for the soft supersymmetry breaking couplings are fully speci�ed, and even if the

QCD coupling and physical top and bottom masses were known with arbitrary accuracy. To

illustrate this, �g. 4 shows solutions for tan� as a function of a single varying parameter

B0=m1=2, with �xedA0 = �0:75m1=2,m1=2 = 400 GeV andm2
0=m

2
1=2 = 0:5 and �3,mb andmt

taking there central values.. For B0=m1=2
>� �0:5, there is always only one solution for tan �,

corresponding to positive �. For B0=m1=2
<� � 0:7, � must be negative, with two distinct

solutions for tan � if �1:1 < B0=m1=2 < �0:7. For the range �0:7 < B0=m1=2 < 0:5, there

are three distinct solutions for tan�, one corresponding to positive �, and two corresponding

to negative �. This is because di�erent sets of Yukawa couplings yt, yb and y� can be chosen

consistently with the known masses, with the choice a�ecting the running of b=�. For that

range, the sign of � cannot be unambiguously predicted.

The regions found above can be correlated with particular models of gaugino mass dom-

inance, depending on the gauge group above MU, how the MSSM sparticles �t into repre-

sentations of that group, and what other particles are present. At one loop order in the

large-Ma limit, the RG equations for the soft parameters are

16�2
d

dt
(b=�) = 4

X
a

g2aMa[Ca(Hu) + Ca(Hd)]; (24)

16�2
d

dt
(at=yt) = 4

X
a

g2aMa[Ca(Hu) + Ca(tL) + Ca(tR)]; (25)

16�2
d

dt
(ab=yb) = 4

X
a

g2aMa[Ca(Hd) + Ca(bL) + Ca(bR)]; (26)

16�2
d

dt
(a�=y� ) = 4

X
a

g2aMa[Ca(Hd) + Ca(�L) + Ca(�R)]; (27)

16�2
d

dt
m2

� = �8X
a

g2ajMaj2Ca(�): (28)

Here the index a runs over gauge groups with Casimir invariants Ca for the representations

of the indicated �elds. Now, in principle these equations could be run down from the input
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Figure 4: Solutions for tan � as a function of B0=m1=2, for � > 0 (solid black) and � < 0
(dashed red). In each case, the boundary conditions imposed at MU = 2 � 1016 GeV are
A0 = �0:75m1=2, with m1=2 = 400 GeV and m2

0=m
2
1=2 = 0:5. This illustrates that for a range

of B0=m1=2 (here, �0:7 to �0:5), there are sometimes simultaneously distinct solutions with
positive � and negative �. For larger B0=m1=2, � is de�nitely positive, while for smaller
B0=m1=2, � is de�nitely negative.

scale to the scale MU to get boundary conditions. The resulting one-loop contributions to

b=� and af=yf are negative, implying that at the scale MU we should be in the lower left

quadrant of �gs. 2 and 3. However, to evaluate these in detail would require a clairvoyant

knowledge of the theory above the apparent uni�cation scale. Furthermore, in grand uni�ed

theory (GUT) models, large representations generally render perturbation theory invalid

below MP. For example, the minimal missing partner SU(5) model gauge coupling appears

to have a Landau pole if extrapolated at two-loop order, and appears to have an ultraviolet-

stable �xed point at three- and four-loop order [25]. The same statement holds for SO(10)

models with large representations. The true UV behavior of such theories is unknown.

Even in models which do not have non-perturbative or Landau-pole behavior in the gauge

couplings, it does not follow that perturbation theory for non-holomorphic scalar squared

masses is reliable. In fact it is commonplace for two-loop contributions to non-holomorphic

scalar squared masses to overwhelm the one-loop contributions even if the gauge couplings

remain perturbative. Another complication is that higher loop corrections are not linear in
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quadratic Casimir invariants for b=� or af=yf .

However, one can still use eqs. (24) and (27) to get a rough idea of what to expect for the

ratios of af=yf to b=� atMU, at least in the limit of perturbative couplings and small particle

content. For example, if the GUT gauge group is E6 with all MSSM chiral super�elds in 27

representations, then one �nds that A0=B0 = 3=2 if one neglects higher loop e�ects. If the

GUT group is SO(10) with Hu and Hd in a 10 and top, bottom and tau in a 16, then[26, 7]

A0=B0 = 7=4. In the case of SU(5) with Hu and Hd in 5+ 5 and standard assignments for

MSSM quarks and leptons, there is a di�erent \A0" for top and bottom and tau, with[26, 7]

A0t=B0 = 2 and A0b=B0 = A0�=B0 = 7=4. The model-dependence tends to cancel out of

those ratios even beyond leading order. For other non-uni�ed gauge-groups, one can make

the approximation that the gauge couplings and gaugino masses above MU are nearly the

same. For SU(4) � SU(2)L � U(1)R, that would imply A0=B0 = 23=8. Similarly, with

the MSSM gauge group SU(3)C � SU(2)L � U(1)Y , with all gauge couplings and gaugino

masses taken as equal above MU, one would �nd A0t=B0 = 23=9 and A0b=B0 = 22=9. This

naive estimate from counting Casimir invariants actually agrees reasonably well with values

obtained atMU for the slightly di�erent situation depicted in �g. 1(b), in which all couplings

were assumed to run up toMP independently according to their MSSM RG equations; there

I found numerically at two loops that A0t=B0 � A0b=B0 � 2:6. Although these ratios can

be modi�ed by many model-dependent e�ects, one can take them as suggestive scenarios;

respectively, \E6-like", \SO(10)-like", etc. Summarizing:

(A0t=B0; A0b=B0) =

8>>>>>><>>>>>>:

(1:5; 1:5) E6�like
(1:75; 1:75) SO(10)�like
(2:0; 1:75) SU(5)�like
(2:56; 2:44) MSSM� like
(2:88; 2:88) SU(4)�like:

(29)

These considerations are compared to the preceding general results in Figure 5, which

divides the B0=m1=2 vs. A0=m1=2 plane into three regions. In the upper unshaded region

including A0 = B0 = 0, the sign of � is de�nitely positive. In the lower unshaded region,

the sign of � is de�nitely negative. In the intermediate (yellow) shaded region, the sign of �

can be either positive or negative, depending on the values of supersymmetric dimensionless

couplings. The extent of this region was maximized by scanning over the full allowed range

of top and bottom masses and QCD coupling, as in eqs. (17)-(19), as well as including all

m1=2 < 400 GeV and 0 < m2
0=m

2
1=2 < 1. (The region will grow very slowly as the maximum

allowed m1=2 is increased.) Also shown are lines corresponding to the boundary conditions

of the di�erent types of models as described above. In the MSSM-like and SU(5)-like cases,

A0t=B0 and A0b=B0 and A0�=B0 are slightly di�erent, so the more important factor A0t=m1=2
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Figure 5: The B0=m1=2 vs. A0=m1=2 plane is divided into three regions, according to whether
� must be positive (upper unshaded), � must be negative (lower unshaded), or � can have
either sign (shaded). The top and bottom quark masses and �3 are allowed to vary over
the entire ranges indicated in eq. (17)-(19). Universal gaugino masses are restricted by
m1=2 < 400 GeV and universal scalar masses lie in the range 0 < m2

0=m
2
1=2 < 1. All values of

tan � leading to correct EWSB, perturbative couplings up toMU , and charged superpartners
heavier than 100 GeV are allowed. For comparison, the approximate boundary condition
ratio predictions of various model frameworks as described in the text are indicated by lines.

is used. We learn the following general lessons. First, if the MX ! MU corrections are not

too large, then � must be positive in all cases. Second, in models with larger corrections,

gauge groups in which the top and bottom quarks are in larger representations than the Higgs

�elds require positive �, while the highly uni�ed groups E6 and SO(10) can sometimes allow

either sign of �.

Someday, the top-quark mass will be better known, and its relation to the top Yukawa

coupling in supersymmetry more accurately computed. Furthermore, measurements of the

sparticle spectrum will enable determination of m1=2, m0. Figure 6 depicts how the situation

will improve, now assuming as �xed the present central value for the top mass with the one-

loop supersymmetric corrections, and m2
0 equal to 0:5m2

1=2. As shown, the region in which
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Figure 6: As in Figure 5, but now taking the top quark mass �xed at its central value,
and m1=2 = 400 GeV with m2

0 = 0:5m2
1=2. The upper unshaded region requires � > 0; the

lower unshaded region requires � < 0; the lighter shaded region allows � of either sign; and
the black region at the right allows no solutions. This shows the improvement that could
follow from knowing the top quark mass accurately and the sfermion masses with reasonable
precision.

the sign of � is not determined by A0=m1=2 and B0=m1=2 shrinks signi�cantly in this case

compared to �g. 5. It will shrink even more if tan � is measured. This represents a concrete

bene�t of an accurate measurement of the top-quark mass and couplings in testing our ideas

of high-scale physics.

The fact that the �-term is apparently of the same order of magnitude as the supersymmetry-

breaking soft terms is a major puzzle within the MSSM. Therefore one should question

whether the origin of the b-term might be qualitatively di�erent from that of the other soft

terms, so that the boundary condition B0 = 0 should not be applied. However, the origin of

the b-term cannot be completely arbitrary, or else one would expect CP-violating couplings

in the neutralino and chargino sector. In any case, with a theory for the origin of the b-term

one can simply look at the plots above with B0=m1=2 displaced by the appropriate amount.

One general strategy for solving the � problem relies on replacing it by the VEV of an
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additional gauge singlet �eld [27]. This allows all dimensionful parameters to be banned

from the superpotential, which now includes instead of the �-term:

W = ��SH0
uH

0
d + : : : (30)

where the ellipses may refer to a self-coupling of S and/or couplings of S to other non-MSSM

�elds. The corresponding supersymmetry-breaking Lagrangian is

� Lsoft = �a�SH0
uH

0
d +m2

SjSj2 + : : : (31)

Consider the limit of small �, so that the resulting theory describes a nearly unmixed singlino

and MSSM neutralinos. Then when S gets its VEV, one has e�ectively

� = �hSi; b = a�hSi: (32)

So all of the above analysis can be repeated with b=� replaced by a�=�. The RG equations

for the scalar cubic couplings are given by adding a term 2a�� to each of eqs. (20)-(22), and

replacing eq. (23) by

16�2
d

dt
(a�=�) = 6g22M2 +

6

5
g21M1 + 6atyt + 6abyb + 2a�y� + 8a�� (33)

where the e�ects of other couplings of S on its anomalous dimension are omitted. The last

term is just a damping term and cannot change the sign of a�=�. In the limit of weakly

coupled S, the additional terms are inconsequential and the preceding analysis goes through

without change. Of course, one must still look at the details of the particular model to decide

whether it can be viable.

The above results were obtained assuming that gaugino masses are uni�ed to a common

value m1=2 and that scalar squared masses are uni�ed to m2
0. The dependence on the latter

assumption is not very strong, as the non-holomorphic scalar squared masses mainly enter

into the determination of the sign of � through their in
uence on tan �, and all values of

tan � were considered. The assumption of gaugino mass uni�cation is stronger, since non-

uni�ed gaugino masses will a�ect the running of b=� and af=yf in di�erent ways. However,

gaugino masses can be reconstructed with good accuracy from future measurements of gluino,

neutralino and chargino masses, so a similar analysis can be repeated for the case that

gaugino mass uni�cation is badly violated. The top and bottom Yukawa couplings may well

be modi�ed from their extrapolated behavior at high mass scales, but the dependence of

Yukawa couplings on the RG evolution comes mainly from lower scales anyway in models of

gaugino mass dominance.

After the discovery of supersymmetry, it will be an important challenge to connect mea-

sured properties of the superpartners to candidate theories of supersymmetry breaking. In
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fact, there are already a couple of weak indirect hints from experiment which may suggest

that if superpartners are not too heavy and gaugino masses have a common phase, then

� should be positive in the standard convention. First, it is often easier to accommodate

constraints on b ! s
 within simple model frameworks if � > 0 [28]. Second, the recent

measurement [29] of the muon magnetic dipole moment also favors this sign [30, 31] if tan �

is not too small and superpartners are not too heavy. While caution is certainly called for

before hailing the muon g � 2 discrepancy as evidence in favor of supersymmetry, it should

be remembered that many models with � < 0 are ruled out by the data at a far higher

con�dence level. In any case, these considerations highlight the importance of understand-

ing the sign of � as a consequence of theory, rather than merely an input parameter. As

I have emphasized in this paper, the theory of the mechanism of supersymmetry breaking

can predict the sign of � in addition to the more obvious mass hierarchies in the sparticle

spectrum.
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